Linus Pauling and The Nature of the Chemical Bond: A Documentary History Narrative  
Home | Search | All Documents and Media | Linus Pauling Day-By-Day
The Tetrahedron
<  13  >

Then Pauling made a daring leap. In the spring of 1928 he wrote a brief note to the Proceedings of the National Academy of Sciences in which he outlined what he called Heitler and London’s "simple theory" of the chemical bond and noted that it was, "in simple cases entirely equivalent to G. N. Lewis’s successful theory of the shared electron pair." Nothing much new there. But at the end of the note, in a single paragraph, he announced a significant advance. His calculations, he said, showed that quantum mechanics could explain the tetrahedral binding of carbon.

This woke readers up. Carbon was a much-studied element, the linchpin of all organic chemistry. Strings of carbon atoms formed the backbone of proteins, fats, and starches–the major constituents of living systems. Carbon chemistry was the chemistry of life.

Carbon was also the subject of a debate between physicists and chemists. It was known that each carbon atom carried a total of six electrons, the first two of which had nothing to do with forming bonds; they paired in a stable two-electron inner shell. The remaining four electrons should be, in theory, at the next energy level, in the next higher shell of the atom.

But physicists’ studies showed that carbon’s four binding electrons actually existed in two slightly different energy levels, or subshells. The two lower-shell electrons should pair with each other, the physicists said, leaving only the remaining two in the next subshell to bond to other atoms. Carbon, the physicists argued, should have a valence of two.

Chemists understood, however, that carbon more commonly offered four strong bonds to other atoms, creating the shape of a three-sided pyramid, or tetrahedron. Carbon had a valence of four. This was the structure of methane, for instance: four hydrogen atoms at the corners of a tetrahedron with a carbon atom at the center.

The physicists’ evidence was undeniable, as was the chemists’. Both groups somehow had to be right. Reconciling the physicists’ carbon and the chemists’ was a major challenge, and Pauling was determined to meet it.

Previous Page Next Page

Audio Clip  Audio: Tetrahedral Characteristics of Atoms. January 17, 1983. (0:30) Transcript and More Information

Video Clip  Video: Lecture 2, Part 4. 1957. (4:31) Transcript and More Information


Click images to enlarge 

Page 1
Letter from Linus Pauling to G.N. Lewis. March 7, 1928.


Cover
"The shared-electron chemical bond." March 7, 1928.

"Anybody could see that quantum mechanics must lead to the tetrahedral carbon atom, because we have it. But the equations were so complicated that I never could be sure that I could present the arguments in such a way that they would be convincing to anybody."

Home | Search | All Documents and Media | Linus Pauling Day-By-Day