Linus Pauling and The Nature of the Chemical Bond: A Documentary History All Documents and Media  
Home | Search | Narrative | Linus Pauling Day-By-Day

All Documents and Media

"Valence and Molecular Structure," Lectures 1 and 2.

"Valence and Molecular Structure," Lectures 1 and 2. 1957.
Produced for the Institutes Program of the National Science Foundation. Robert and Jane Chapin, producers.

Lecture 1, Part 5. (6:53)

Get the Flash Player to see this video.

Transcript

Linus Pauling: Now we may discuss the structure of all of the elements, all of the elements that make up the world as we know it in relation to the periodic system of the elements. Let us represent the various elements by showing how their electrons occupy orbitals, and we can plot energy vertically.

We start out with the 1s orbital. Hydrogen can have one electron in the 1s orbital - I represent it by putting in an arrow pointing upward. Helium can have a second electron – two electrons in the 1s orbital. I show them the arrow pointing, pointing down. By Power’s Principal, that is all the orbitals the electrons that can be placed in the 1s orbital.

The next orbital is 2s. When we come to lithium, the lithium atom with three electrons can have two in the 1s orbital, giving a completed helium shell, and then one in 2s. Beryllium, with atomic number four, and four electrons, can be represented by having two electrons in the 2s orbital, its electron configuration is 1s2, 2s2. Then we have the three 2p orbitals. They can be occupied successively by electrons in boron, carbon, nitrogen, oxygen, fluorine, neon. At neon, this shell too, is completed – the neon shell.

Now we come to the third shell in the periodic table. The 3s orbital, two 3p orbitals and…that’s all that I want now, two 3p orbitals. The succession of elements here, sodium, magnesium, scandium, let me see, silicon, phosphorous, sulfur, chlorine, argon. This succession of eight elements brings us up to the noble gas argon, and we can say that this third shell is the argon shell.

Next, we come to the fourth shell, with atomic number nineteen, potassium. Here we have two electrons, ten electrons, eighteen electrons. These numbers, two, ten, and eighteen, are characteristic of the first three noble gases. With potassium, we have the 4s electrons. With calcium, then, a pair of 4s electrons. Then, the 4p orbitals and the 4d orbitals. One, two, three, four, five of the 3d orbitals. This shell is called the krypton shell, a shell of eighteen electrons occupying nine orbitals...from here, whereas here in the shorter shelves we have only four. These can be occupied by eighteen elements: potassium, calcium, scandium...I think that I said scandium down here, of course, here, I should have said sodium, magnesium, aluminum, silicon, and so on, here we have the first long period of eighteen elements: potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, arsenic, selenium, bromine, and krypton. This is, this ends up with krypton and we call it the krypton shell of eighteen elements.

Here, I should mention that the usage of this term “shell” varies somewhat. It has been customary to refer to the k-shell, the l-shell, and the m-shell and so on. Well, the m-shell, in the old designation, is the shell that contains all of the orbitals with the same total quantum number; 3s, 3p and 3d. But, so far as we are concerned, in chemistry, it is more important to lump together the orbitals with roughly the same energy, and here, these are the 4f orbitals, the three 4p orbitals, and the five 3d orbitals.

The next shell, the next shell, is the second, involves the second long period, again of nine orbitals, 5s, 5p, 4d, and eighteen elements ending up with xenon. Xenon, Xe, and this shell of eighteen electrons, nine orbitals, we can call the xenon shell.

The next shell, 6s, then, the 6p orbitals, five 5d orbitals, and seven 4f orbitals comprises the radon shell. This is a very long shell. Sixteen orbitals altogether, thirty-two elements. It brings us up to atomic number, well, let’s see, helium has atomic number two, neon, ten, argon, eighteen, krypton, thirty-six, radon, fifty-four. Thirty...no, xenon, 54, radon, eighty-six. Following this comes the second...very long shell 7s, 7p, 6d, 5f, another thirty-two elements that would bring us up to element one hundred eighteen, that we may call eka-radon.

Clip

Associated: Linus Pauling, Samuel Goudsmit, Robert Chapin, Jane Chapin, National Science Foundation
Clip ID: 1957v.1-05

Full Work

Creator: National Science Foundation
Associated: Linus Pauling, Robert Chapin, Jane Chapin

Date: 1957
Genre: video
ID: 1957v.1
Copyright: More Information

Previous Video Clip 
   Lecture 1, Part 4.


Home | Search | Narrative | Linus Pauling Day-By-Day